Light hadron spectroscopy via charmonium decays

Alexey Zhemchugov
(JINR, Dubna)
on behalf of the BES-III Collaboration

Main questions

- Why so many states are seen in meson spectrum?
- Why so few states are seen in baryon spectrum?
- Does any of non-qq or non-qqq states, predicted by QCD, really exist?
- What are effective degrees of freedom to describe internal structure of hadrons, and how do they interact?

Light hadron spectroscopy in charmonium decays

- Large production cross-section = Enormous statistic & good background conditions
- Any quantum number is accessible in J/Ψ and Ψ' decays
- Initial state is well defined (1- with almost zero longitudinal component)
- High probability of radiative decays, providing access to all C=+1 state, while C=-1 state is forbidden
- 3-gluon annihilation process is flavor-blind, and it is a nice source of excited strange and charmed baryons for baryon spectroscopy

Light hadron spectroscopy in charmonium decays

- Large production cross-section = Enormous statistic & good background conditions
- Any quantum number is accessible in J/Ψ and Ψ' decays
- Initial state is well defined (1- with almost zero longitudinal component)
- High probability of radiative decays, providing access to all C=+1 state, while C=-1 state is forbidden
- 3-gluon annihilation process is flavor-blind, and it is a nice source of excited strange and charmed baryons for baryon spectroscopy

Rich source of charmonium and a good detector are needed

Light meson spectrum

- Constituent quark model provides generally good description of meson spectrum, but...
 - Too many 0⁺⁺ states: σ , $f_0(980)$, $f_0(1370)$, $f_0(1500)$, $f_0(1710)$, $f_0(1810)$
 - The same for isoscalar 1⁺⁺ states: $f_1(1285)$, $f_1(1420)$, $f_1(1510)$ observed instead of 2 predicted
 - Origin of $a_0(980)$ and $f_0(980)$?
- But, NO clear evidence of non-qq meson state is found so far

Looking for new phenomena: glueballs

- Radiative decays of J/ψ are gluon-rich, and it is an ideal place to look for lightest (0",2") glueballs (predicted by LQCD)
- Glueballs with "normal" quantum numbers must mix with "normal" $q\bar{q}$ meson
- Precise measurement of coupling to different final states is necessary to prove glueball existence:
 - Systematic studies of $f_0(1370)$, $f_0(1500)$, $f_0(1710)$, $f_0(1810)$ in decays $J/\psi \rightarrow \gamma PP, \gamma VV$ and complementary hadronic decays
 - Study of η(1295), η(1405), η(1475), η(1760), η(2225) in J/ψ → γηππ, γη'ππ, γΚ K π, etc.
 - Search for tensor glueball candidate f_J (2220), in $J/\psi \rightarrow \gamma \eta \eta$ and $\gamma \eta \eta'$

Looking for new phenomena: hybrids, multiquarks and molecules

- Hybrids: main signature is exotic quantum numbers (like 1-+,)
 - For example, search for $\pi_1(1400)$ in $J/\psi \rightarrow \rho \eta \pi^0$
- Multiquarks: expected to be broad states, if above the hadron threshold
 - Any enhancement in invariant mass near the threshold could be a signature of multiquarks
 - Precision study of $J/\psi \to \gamma \omega \phi$, $J/\psi \to \gamma p p$, $J/\psi \to p K^- \Lambda$ may shed light on these states
- Molecular states
 - Study of possible $a_0(980)$ $f_0(980)$ mixing in $J/\psi \rightarrow \phi$ f0(980) $\rightarrow \phi$ a0(980) $\rightarrow \phi \eta \pi^0$
 - \(\lambda(1405)\) as KN molecule?

The problem of σ and κ mesons

- Existence of σ and κ is proposed to describe $\pi\pi$ and $K\pi$ and scattering data, respectively, however they do not fit into ordinary qq nonet
- Recent observations of σ:
 - CLEO found evidence of σ in D⁺ $\rightarrow \pi^-\pi^+\pi^+$
 - BESII observed σ in $\psi(2S) \rightarrow \pi^{+}\pi^{-}J/\psi$ and $J/\psi \rightarrow \omega \pi^{+}\pi^{-}$
- Recent observations of k:
 - FNAL E791 found evidence of neutral κ in D⁺ $\rightarrow K^-\pi^+\pi^+$
 - FOCUS data on D⁺ \rightarrow K⁻ $\pi^+\mu^+\nu$ require K*0 interfere with either a constant amplitude or a broad 0+ resonance in K π
 - BESII observed neutral κ in $J/\psi \to K^{*0}K\pi \to K\pi K\pi$. Observation of charged κ in reported recently [arxiv:1002.0893].
- However, no indisputable proof of their existence is given so far
- More experimental studies are necessary, and looking into charmonium decays to states containing $\pi\pi$ and $K\pi$ may be helpful.

Baryon spectroscopy

- Constituent quark model explains spectrum of low-lying baryons, but fails to describe spectrum of excited baryons
- Advantages of baryon spectroscopy in charmonium decays
 - Isospin conservation ensures that the $J/\psi \to NN\pi$ ($NN\pi\pi$) decay processes produce pure isospin=1/2 πN ($\pi\pi N$) systems
 - Charmonium decay to baryons goes via virtual gluons a nice environment to look for "missing" N* resonances
 - ψ' decays especially important, since they allow to study excited hyperons $\Lambda^*, \Sigma^*, \Xi^*$. Thus, for example, can access doubly strange Ξ^* baryons more than 30 such states predicted, only 2 have been seen

The BEPCII/BESIII project

China, Germany, Italy, Japan, JINR, Pakistan, Korea, Russia, USA

The project timeline

2003: BEPC/BES-II upgrade started

19 July 2008: First e+e-collision at BESIII

November 2008: Luminosity of 1.2 x10³² cm⁻²s⁻¹ achieved

Spring 2009: $106M \psi(2S)$ decays recorded (×4 CLEOc)

May 2009: Luminosity of 3.2 x10³² cm⁻²s⁻¹ achieved

July 2009: 226M J/ψ decays recorded (×4 BESII)

14 January 2010 till now: Started take data of decays ψ(3770)→DD. About 600 pb⁻¹ (2/3 CLEOc) collected already.

19 May 2010 'QWG2010' '10

The BES-III detector

Detailed description: NIM A 614(2010)345-399

CsI(Tl) calorimeter, 2.5%@1GeV

Detector performance

Sub-system	Design	Achieved
MDC	σ _× : 130 μm	135 µm
	δP/P: 0.6% @ 1GeV	0.5% @ 1 <i>G</i> eV
	σ(dE/dx): 6-7 %	5.8%
EM Calorimeter	δΕ/Ε: 2.5% @ 1 <i>G</i> eV	2.3% @ 1 GeV
TOF detector	Barrel: single layer 100 ps Barrel: double layer 80-90 ps Endcap: 110 ps	78 ps

First results of BES-III

With ~110M of ψ' decays and ~220M J/ ψ decays:

- pp threshold enhancement is confirmed in $J/\psi{\to}\gamma p\bar{p}$ decay
- pp threshold enhancement is NOT observed in $\psi' \rightarrow \gamma pp$ decay
- X(1835) confirmed in $J/\psi \rightarrow \gamma \pi \pi \eta'$
- Properties of $h_c(^1P_1)$ measured in ψ' decay (separate talk by Wang LiangLiang)

19 May 2010 QWG2010 13

pp mass threshold enhancement: beginning of a story

Several non-observations

 $\psi' \rightarrow \gamma pp$

PR D73, 032001 (2006)

No significant narrow strong enhancement near threshold

05/15/10

19 May 2010

14

QWG2010

Observation of an anomalous enhancement near the threshold in pp mass spectrum at BES-III

Chinese Phys C34(4): 421-426, 2010

Not compatible with: $\eta(1760)$, $\pi(1800)$

Fitted with a S-wave BW, $M=1861^{+6}_{-13} (stat)^{+7}_{-26} (syst) MeV/c^2$ $\Gamma < 38 MeV/c^2 (90\% CL)$

This enhancement is NOT observed in Ψ' decay

Observation of X(1835) $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^$ at BESII

Mass spectrum of $\eta' \pi^+ \pi^-$ in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

Significant peak at M~1835MeV

Statistic significance of X(1835) is about 18σ

Statistic significance of X(1835) is about 9σ

Combined mass spectrum of two decay modes

Summary

- Charmonium decays provide an excellent lab for light hadron spectroscopy
- The BES-III experiment gives an opportunity for precision measurement of light hadron spectra, search for glueballs, study of excited baryons etc.
- First results are already obtained:
 - $p\bar{p}$ threshold enhancement is confirmed in $J/\psi \! \! \to \! \! \gamma p\bar{p}$ decay
 - $p\bar{p}$ threshold enhancement is NOT observed in $\psi' \! \to \! \gamma p\bar{p}$ decay
 - X(1835) confirmed in $J/\psi \rightarrow \gamma \pi \pi \eta$